Utilizing Multiple in Silico Analyses to Identify Putative Causal SCN5A Variants in Brugada Syndrome
نویسندگان
چکیده
Brugada syndrome (BrS) is an inheritable sudden cardiac death disease mainly caused by SCN5A mutations. Traditional approaches can be costly and time-consuming if all candidate variants need to be validated through in vitro studies. Therefore, we developed a new approach by combining multiple in silico analyses to predict functional and structural changes of candidate SCN5A variants in BrS before conducting in vitro studies. Five SCN5A non-synonymous variants (1651G>A, 1776C>G, 1673A>G, 3269C>T and 3578G>A) were identified in 14 BrS patients using direct DNA sequencing. Several bioinformatics algorithms were applied and predicted that 1651G>A (A551T) and 1776C>G (N592K) were high-risk SCN5A variants (odds ratio 59.59 and 23.93). The results were validated by Mass spectrometry and in vitro electrophysiological assays. We concluded that integrating sequence-based information and secondary protein structures elements may help select highly potential variants in BrS before conducting time-consuming electrophysiological studies and two novel SCN5A mutations were validated.
منابع مشابه
Enhanced Classification of Brugada Syndrome-Associated and Long-QT Syndrome-Associated Genetic Variants in the SCN5A-Encoded Na(v)1.5 Cardiac Sodium Channel.
BACKGROUND A 2% to 5% background rate of rare SCN5A nonsynonymous single nucleotide variants (nsSNVs) among healthy individuals confounds clinical genetic testing. Therefore, the purpose of this study was to enhance interpretation of SCN5A nsSNVs for clinical genetic testing using estimated predictive values derived from protein-topology and 7 in silico tools. METHODS AND RESULTS Seven in sil...
متن کاملMolecular Medicine Informatic and Functional Approaches to Identifying a Regulatory Region for the Cardiac Sodium Channel
Rationale: Although multiple lines of evidence suggest that variable expression of the cardiac sodium channel gene SCN5A plays a role in susceptibility to arrhythmia, little is known about its transcriptional regulation. Objective: We used in silico and in vitro experiments to identify possible noncoding sequences important for transcriptional regulation of SCN5A. The results were extended to m...
متن کاملGenetic Diversity of SCN5A Gene and Its Possible Association with the Concealed Form of Brugada Syndrome Development in Polish Group of Patients
Brugada Syndrome (BS) is an inherited channelopathy associated with a high incidence of sudden cardiac death. The paper presents the discovery of new genetic variants of SCN5A gene which might be associated with the development of a concealed form of Brugada Syndrome. The study involved a group of 59 patients (37 men) with suspected concealed form of Brugada Syndrome. Pharmacological provocatio...
متن کاملReduced Penetrance and Variable Expression of SCN5A Mutations and the Importance of Co-inherited Genetic Variants: Case Report and Review of the Literature
Mutations in the SCN5A gene are responsible for multiple phenotypical presentations including Brugada syndrome, long QT syndrome, progressive familial heart block, sick sinus syndrome, dilated cardiomyopathy, lone atrial fibrillation and multiple overlap syndromes. These different phenotypic expressions of a mutation in a single gene can be explained by variable expression and reduced penetranc...
متن کاملVariants in the SCN5A Promoter Associated With Various Arrhythmia Phenotypes
BACKGROUND Mutations in the coding sequence of SCN5A, which encodes the cardiac Na(+) channel α subunit, have been associated with inherited susceptibility to various arrhythmias. Variable expression of SCN5A is a possible mechanism responsible for this pleiotropic effect; however, it is unknown whether variants in the promoter and regulatory regions of SCN5A also modulate the risk of arrhythmi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2014